Chapter 10
Practical Database Design Methodology and Use of UML Diagrams
Chapter 10 Outline

- The Role of Information Systems in Organizations
- The Database Design and Implementation Process
- Use of UML Diagrams as an Aid to Database Design Specification
- Rational Rose: A UML-Based Design Tool
- Automated Database Design Tools
Practical Database Design Methodology and Use of UML Diagrams

- Design methodology
 - Target database managed by some type of database management system
- Various design methodologies
- Large database
 - Several dozen gigabytes of data and a schema with more than 30 or 40 distinct entity types
The Role of Information Systems in Organizations

- Organizational context for using database systems
 - Organizations have created the position of database administrator (DBA) and database administration departments
 - Information technology (IT) and information resource management (IRM) departments
 - Key to successful business management
The Role of Information Systems in Organizations (cont’d.)

- Database systems are integral components in computer-based information systems
- Personal computers and database system-like software products
 - Utilized by users who previously belonged to the category of casual and occasional database users
- **Personal databases** gaining popularity
- Databases are distributed over multiple computer systems
 - Better local control and faster local processing
The Role of Information Systems in Organizations (cont’d.)

- Data dictionary systems or information repositories
 - Mini DBMSs
 - Manage meta-data

- High-performance transaction processing systems require around-the-clock nonstop operation
 - Performance is critical
The Information System Life Cycle

- Information system (IS)
 - Resources involved in collection, management, use, and dissemination of information resources of organization
The Information System Life Cycle

- **Macro life cycle**
 - Feasibility analysis
 - Requirements collection and analysis
 - Design
 - Implementation
 - Validation and acceptance testing
 - Requirements collection and analysis
The Information System Life Cycle (cont’d.)

- The database application system life cycle: *micro life cycle*
 - System definition
 - Database design
 - Database implementation
 - Loading or data conversion
The Information System Life Cycle (cont’d.)

- Application conversion
- Testing and validation
- Operation
- Monitoring and maintenance
The Database Design and Implementation Process

- Design logical and physical structure of one or more databases
 - Accommodate the information needs of the users in an organization for a defined set of applications
- Goals of database design
 - Very hard to accomplish and measure
- Often begins with informal and incomplete requirements
The Database Design and Implementation Process (cont’d.)

- Main phases of the overall database design and implementation process:
 - 1. Requirements collection and analysis
 - 2. Conceptual database design
 - 3. Choice of a DBMS
 - 4. Data model mapping (also called logical database design)
 - 5. Physical database design
 - 6. Database system implementation and tuning
Figure 10.1
Phases of database design and implementation for large databases.

<table>
<thead>
<tr>
<th>Phase 1: Requirements collection and analysis</th>
<th>Data content, structure, and constraints</th>
<th>Database applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 2: Conceptual database design</td>
<td>Data requirements</td>
<td>Processing requirements</td>
</tr>
<tr>
<td>Phase 3: Choice of DBMS</td>
<td>Conceptual Schema design (DBMS-independent)</td>
<td>Transaction and application design (DBMS-independent)</td>
</tr>
<tr>
<td>Phase 4: Data model mapping (logical design)</td>
<td>Logical Schema and view design (DBMS-dependent)</td>
<td>Frequencies, performance constraints</td>
</tr>
<tr>
<td>Phase 5: Physical design</td>
<td>Internal Schema design (DBMS-dependent)</td>
<td></td>
</tr>
<tr>
<td>Phase 6: System implementation and tuning</td>
<td>DDL statements SDL statements</td>
<td>Transaction and application implementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Database Design and Implementation Process (cont’d.)

- Parallel activities
 - Data content, structure, and constraints of the database
 - Design of database applications
- Data-driven versus process-driven design
- Feedback loops among phases and within phases are common
The Database Design and Implementation Process (cont’d.)

- Heart of the database design process
 - Conceptual database design (Phase 2)
 - Data model mapping (Phase 4)
 - Physical database design (Phase 5)
 - Database system implementation and tuning (Phase 6)
Phase 1: Requirements Collection and Analysis

Activities

- Identify application areas and user groups
- Study and analyze documentation
- Study current operating environment
- Collect written responses from users
Phase 1 (cont’d.)

- Requirements specification techniques
 - Oriented analysis (OOA)
 - Data flow diagrams (DFDs)
 - Refinement of application goals
 - Computer-aided
Phase 2: Conceptual Database Design

- Phase 2a: Conceptual Schema Design
 - Important to use a conceptual high-level data model
 - Approaches to conceptual schema design
 - Centralized (or one shot) schema design approach
 - View integration approach
Phase 2: (cont’d.)

- **Strategies for schema design**
 - Top-down strategy
 - Bottom-up strategy
 - Inside-out strategy
 - Mixed strategy

- **Schema (view) integration**
 - Identify correspondences/conflicts among schemas:
 - Naming conflicts, type conflicts, domain (value set) conflicts, conflicts among constraints
 - Modify views to conform to one another
 - Merge of views and restructure
Phase 2: (cont’d.)

- Strategies for the view integration process
 - Binary ladder integration
 - N-ary integration
 - Binary balanced strategy
 - Mixed strategy

- Phase 2b: Transaction Design
 - In parallel with Phase 2a
 - Specify transactions at a conceptual level
 - Identify input/output and functional behavior
 - Notation for specifying processes
Phase 3: Choice of a DBMS

- Costs to consider
 - Software acquisition cost
 - Maintenance cost
 - Hardware acquisition cost
 - Database creation and conversion cost
 - Personnel cost
 - Training cost
 - Operating cost
- Consider DBMS portability among different types of hardware
Phase 4: Data Model Mapping (Logical Database Design)

- Create a conceptual schema and external schemas
 - In data model of selected DBMS

- Stages
 - System-independent mapping
 - Tailoring schemas to a specific DBMS
Phase 5: Physical Database Design

- Choose specific file storage structures and access paths for the database files
 - Achieve good performance
- Criteria used to guide choice of physical database design options:
 - Response time
 - Space utilization
 - Transaction throughput
Phase 6: Database System Implementation and Tuning

- Typically responsibility of the DBA
 - Compose DDL
 - Load database
 - Convert data from earlier systems

- Database programs implemented by application programmers

- Most systems include monitoring utility to collect performance statistics
Use of UML Diagrams as an Aid to Database Design Specification

- Use UML as a design specification standard
- Unified Modeling Language (UML) approach
 - Combines commonly accepted concepts from many object-oriented (O-O) methods and methodologies
 - Includes use case diagrams, sequence diagrams, and statechart diagrams
Advantages of UML

- Resulting models can be used to design relational, object-oriented, or object-relational databases
- Brings traditional database modelers, analysts, and designers together with software application developers
Different Types of Diagrams in UML

- Structural diagrams
 - Class diagrams and package diagrams
 - Object diagrams
 - Component diagrams
 - Deployment diagrams
Different Types of Diagrams in UML (cont’d.)

- Behavioral diagrams
 - Use case diagrams
 - Sequence diagrams
 - Collaboration diagrams
 - Statechart diagrams
 - Activity diagrams
Figure 10.7
The use case diagram notation.
Different Types of Diagrams in UML (cont’d.)

Figure 10.9
The sequence diagram notation.
Different Types of Diagrams in UML (cont’d.)

Figure 10.10
The statechart diagram notation.

State consists of three parts:
- Name
- Activities
- Embedded machine
Activities and embedded machine are optional

Start/initial state
Transition
State 1
State 2
State 3
Stop/accepting/final state

Name
Do/action
Modeling and Design Example: UNIVERSITY Database

Figure 10.11
A sample statechart diagram for the UNIVERSITY database.
Figure 10.12
A sequence diagram for the UNIVERSITY database.
Figure 10.13
The design of the UNIVERSITY database as a class diagram.
Rational Rose: A UML-Based Design Tool

- **Rational Rose for database design**
 - Modeling tool used in the industry to develop information systems
- **Rational Rose data modeler**
 - Visual modeling tool for designing databases
 - Provides capability to:
 - **Forward engineer** a database
 - **Reverse engineer** an existing implemented database into conceptual design
Data Modeling Using Rational Rose Data Modeler

- Reverse engineering
 - Allows the user to create a conceptual data model based on an existing database schema specified in a DDL file
- Forward engineering and DDL generation
 - Create a data model directly from scratch in Rose
 - Generate DDL for a specific DBMS
Data Modeling Using Rational Rose Data Modeler (cont’d.)

- Conceptual design in UML notation
 - Build ER diagrams using class diagrams in Rational Rose
- Identifying relationships
 - Object in a child class cannot exist without a corresponding parent object
- Non-identifying relationships
 - Specify a regular association (relationship) between two independent classes
Data Modeling Using Rational Rose Data Modeler (cont’d.)

- Converting logical data model to object model and vice versa
 - Logical data model can be converted to an object model
 - Allows a deep understanding of relationships between conceptual and implementation models
Data Modeling Using Rational Rose Data Modeler (cont’d.)

- Synchronization between the conceptual design and the actual database
- Extensive domain support
 - Create a standard set of user-defined data types
- Easy communication among design teams
 - Application developer can access both the object and data models
Automated Database Design Tools

- Many CASE (computer-aided software engineering) tools for database design
- Combination of the following facilities
 - Diagramming
 - Model mapping
 - Design normalization
Automated Database Design Tools (cont’d.)

- Characteristics that a good design tool should possess:
 - Easy-to-use interface
 - Analytical components
 - Heuristic components
 - Trade-off analysis
 - Display of design results
 - Design verification
Automated Database Design Tools (cont’d.)

- Variety of products available
- Some use expert system technology

<table>
<thead>
<tr>
<th>Company</th>
<th>Tool</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embarcadero Technologies</td>
<td>ER/Studio</td>
<td>Database modeling in ER and IDEF1x</td>
</tr>
<tr>
<td></td>
<td>DBArtisan</td>
<td>Database administration and space and security management</td>
</tr>
<tr>
<td>Oracle</td>
<td>Developer 2000 and Designer 2000</td>
<td>Database modeling, application development</td>
</tr>
<tr>
<td>Persistence Inc.</td>
<td>PowerTier</td>
<td>Mapping from O-O to relational model</td>
</tr>
<tr>
<td>Platinum Technology</td>
<td>Platinum ModelMart, ERwin, BPwin, AllFusion Component Modeler</td>
<td>Data, process, and business component modeling</td>
</tr>
<tr>
<td>(Computer Associates)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popkin Software</td>
<td>Telelogic System Architect</td>
<td>Data modeling, object modeling, process modeling, structured analysis/design</td>
</tr>
<tr>
<td>Rational (IBM)</td>
<td>Rational Rose</td>
<td>Modeling in UML and application generation in C++ and Java</td>
</tr>
<tr>
<td></td>
<td>XDE Developer Plus</td>
<td></td>
</tr>
<tr>
<td>Resolution Ltd.</td>
<td>XCase</td>
<td>Conceptual modeling up to code maintenance</td>
</tr>
<tr>
<td>Sybase</td>
<td>Enterprise Application Suite</td>
<td>Data modeling, business logic modeling</td>
</tr>
<tr>
<td>Visio</td>
<td>Visio Enterprise</td>
<td>Data modeling, design and reengineering Visual Basic and Visual C++</td>
</tr>
</tbody>
</table>
Summary

- Six phases of the design process
 - Commonly include conceptual design, logical design (data model mapping), physical design
- UML diagrams
 - Aid specification of database models and design
- Rational Rose and the Rose Data Modeler
 - Provide support for the conceptual design and logical design phases of database design