Answers to Sample Questions

No calculator was used.

- 1. Let W mean the wind is blowing, P mean Lara passes her exam and H mean Dad is happy. Express the following statements symbolically, using the notation of propositional logic.
 - (a) The wind is not blowing.

 $\sim W$

(b) Lara passes her exam or Dad is sad.

 $P \vee \sim H$

(c) Lara fails her exam and the wind is blowing.

$$\sim P \wedge W$$

(d) If Lara passes her exam then Dad is happy.

$$P \to H$$

(e) The wind is blowing if and only if Dad is sad.

$$W \leftrightarrow \sim H$$

- 2. Consider the compound proposition $(P \to Q) \leftrightarrow (P \land \sim Q)$.
 - (a) Construct the truth table for the compound proposition.

P	Q	$\sim Q$	$P \to Q$	$P \wedge {\sim} Q$	$(P \to Q) \leftrightarrow (P \land \sim Q)$
Т	F	Т	${ m T}$	F	F
Τ	\mathbf{T}	F	\mathbf{F}	${ m T}$	F
\mathbf{F}	${\rm T}$	Τ	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	F	F	${ m T}$	\mathbf{F}	F

(b) Is this a tautology, a contradiction or a contingency? Give reasons for your answer.

The compound proposition is a contradiction, since only F appears in the last column.

- 3. Consider the compound proposition $P \lor Q \lor \sim R \to Q \land R$.
 - (a) Construct the truth table for the compound proposition.

				A	B	
P	Q	R	$\sim R$	$P \vee Q \vee \sim R$	$\widetilde{Q\wedge R}$	$A \rightarrow B$
\overline{T}	Т	Τ	F	Τ	Τ	Т
\mathbf{T}	${ m T}$	\mathbf{F}	Τ	${ m T}$	\mathbf{F}	${ m F}$
\mathbf{T}	\mathbf{F}	${\rm T}$	F	${ m T}$	\mathbf{F}	${ m F}$
${ m T}$	\mathbf{F}	\mathbf{F}	T	${ m T}$	\mathbf{F}	F
\mathbf{F}	${\rm T}$	${\rm T}$	F	${ m T}$	${ m T}$	Τ
\mathbf{F}	${\rm T}$	\mathbf{F}	T	${ m T}$	\mathbf{F}	F
\mathbf{F}	\mathbf{F}	${ m T}$	F	\mathbf{F}	\mathbf{F}	T
\mathbf{F}	\mathbf{F}	\mathbf{F}	Γ	${ m T}$	F	F

- (b) Is this a tautology, a contradiction or a contingency? Give reasons for your answer.

 The compound proposition is a contingency, since both T and F appear in the last column.
- 4. Consider the compound proposition $P \wedge \sim Q \wedge R \to P \wedge (Q \vee R)$.
 - (a) Construct the truth table for the compound proposition.

					A	B	
P	Q	R	$\sim Q$	$Q\vee R$	$\overbrace{P \wedge \sim Q \wedge R}$	$P \wedge (Q \vee R)$	$A \rightarrow B$
\overline{T}	Τ	Τ	F	Τ	F	Τ	Т
${ m T}$	${\rm T}$	\mathbf{F}	F	${ m T}$	\mathbf{F}	${ m T}$	Τ
${ m T}$	\mathbf{F}	\mathbf{T}	Τ	${ m T}$	${ m T}$	${ m T}$	Τ
${ m T}$	\mathbf{F}	\mathbf{F}	Τ	\mathbf{F}	\mathbf{F}	\mathbf{F}	Τ
\mathbf{F}	${\rm T}$	${\rm T}$	F	${ m T}$	\mathbf{F}	\mathbf{F}	Τ
\mathbf{F}	${\rm T}$	\mathbf{F}	F	${ m T}$	\mathbf{F}	\mathbf{F}	Τ
\mathbf{F}	\mathbf{F}	${\rm T}$	Τ	${ m T}$	${ m F}$	\mathbf{F}	Γ
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	Τ

(b) Is this a tautology, a contradiction or a contingency? Give reasons for your answer.

The compound proposition is a tautology, since only T appears in the last column.